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SYNOPSIS 

Multiobjective Pareto optimal solutions have been generated for three grades of nylon 6 
being produced in an industrial semibatch reactor. The optimal operating conditions (called 
preferred solutions) for these three batches are easy to implement and lead to substantial 
improvements over current practice. The technique used is quite general and can easily be 
applied to improve the operation of other industrial polymerization reactors or design 
better (new) reactors. Good mathematical models, which account for the important phys- 
icochemical aspects actually operative in a reactor and which have been tested on industrial 
data, are a prerequisite for such optimization studies. 0 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

As in other systems, the operating variables in a 
polymerization reactor influence its performance in 
interesting but often conflicting ways. This neces- 
sitates their optimization and a study of their para- 
metric sensitivity. A number of studies have been 
reported in the past on the optimal temperature and 
initiator or monomer addition histories (or profiles) 
for free-radical 1-5 and step-growth  polymerization^"'^ 
in batch, semibatch, or plug-flow reactors. In most 
of these studies, the function which is minimized 
(or maximized) is the weighted average of a few in- 
dividual objectives, selected, e.g., from among the 
( a )  concentration of unreacted monomer in the 
product, ( b )  concentration of undesirable side 
products, ( c )  reaction time, (d )  deviation of the 
number-average chain length (p, , )  , and/or polydis- 
persity index (PDI )  , from the desired values, etc. 
The, scalar (overall) objective functions, I ,  used in 
these studies are, thus, of the form 

Min I = C w , I i [ x ( t f ) ,  tr]  
u ( t )  I 

In eq. ( 1 ) , w i  is the weightage factor associated with 
the individual objective function, Ii ; u ( t )  , the con- 
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trol variable history ( in  general, a vector represent- 
ing, e.g., temperature, initiator addition rate) ; t ,  the 
time; t,, the (final) reaction time; and x( t ) ,  the 
vector of state variables describing the system. The 
optimal histories (or profiles) were generated using 
a variety of constraints, e.g., the reaction tempera- 
ture being limited between an upper and a lower 
bound, etc. 

Computation of the optimal trajectories, u ( t )  , of 
the type described is relatively simple, but there is 
considerable subjectivity on the values assigned to 
the weightage factors. Mathematically, the most 
important drawback of this approach is the possi- 
bility of losing certain optimal solutions, 15.16 irre- 
spective of the weightage factors used in the (over- 
all) objective function, I .  This  happen^'^,'^ when 
the nonconvexity of the objective function gives rise 
to a duality gap. Since real-life problems are seldom 
convex, an alternative approach, if possible, needs 
to be explored. 

In recent years, the area of vector optimization 
has come into prominence in polymer engineering. 
In this, the objective function, I ,  is a vector com- 
prising the individual objective functions, Ii . This 
is a very powerful approach and leads to  better de- 
cision making by a designer. This method has its 
 root^'^,'^ in management science and resource man- 
agement and is referred to as multiobjective decision 
making or optimization. It not only overcomes the 
disadvantages associated with scalar optimization, 
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but offers additional advantages of being able to deal 
with usually incompatible and nonquantifiable ef- 
fects like pollution, efficiency, etc. Since most op- 
timization problems in polymer reaction engineering 
often deal with such objectives, multiobjective func- 
tion optimization offers excellent prospects for use 
in the optimal design and operation of these reactors. 
Indeed, a few ~ tud ie s ’~ -~ l  have already been reported 
in the last decade on the optimization of polymer 
and copolymer reactors using this methodology. 
None of these studies, however, was on industrial 
reactors, even though the qualitative conclusions 
drawn can give valuable insight. In this article, we 
optimize the operation of an industrial semibatch 
nylon 6 reactor. This reactor has been simulated by 
our group earlier, 22-24 and a satisfactory mathemat- 
ical model is already available, which can be used 
with confidence for optimization purposes. 

Multiobjective function optimization is usually 
executed in two phases-an objective or mathemat- 
ical phase and a subjective or decision-making phase. 
In the mathematical phase, a Pareto set is generated. 
This is a set of equivalent optimum points, such 
that upgrading any one objective function leads to  
simultaneous worsening of a t  least one or more other 
objective functions. The points on the Pareto set 
satisfy all the constraints of the problem, e.g., mass 
and energy balance equations (usually in the form 
of ordinary differential equations [ODES] for well- 
mixed reactors) and end-point constraints (e.g., 
product having a desired value of p, , ) .  Each point 
on the Pareto corresponds to a different operating 
(or control) variable history, u ( t )  . The second phase 
is slightly more subjective in nature and involves 
the decision maker to study the “best” of the optimal 
points on the Pareto set, using his “judgement” (or 
additional information not incorporated in the gen- 
eration of the Pareto and usually not easily quan- 
tifiable). It is obvious that the Pareto set generated 
in phase 1 helps channelize the thinking of the de- 
cision maker in a better manner. 

Several methods have been described in the lit- 
erature on the generation of the Pareto set. Of these, 
the simplest and the most commonly used is the E-  

constraint approach. In t h i ~ , ’ ~ , ’ ~  we select any one 
objective function and minimize it while constrain- 
ing the remaining objectives to have some preas- 
signed values, ej. Thus, the original multivariable 
optimization described by 

subject to (s. t.) : 

all constraints [ e.g., mass and energy balances, 

end-point constraints, maximum 

and minimum values on u ( t )  , etc.] (2b)  

is transformed into the following simpler problem: 

s.t.: 

I j [ x ( t f ) ,  t f ]  = c j ;  j = 1, 2 , .  . . , r ;  j f i (3b) 

(3c) all other constraints [as  in eq. 2 ( b )  ] 

The solution of the problem described in eq. ( 3 )  
gives a single point on the Pareto set. The complete 
Pareto surface can be generated by varying E, over 
their entire range, 
or c,,,,, can be obtained by the solution of the fol- 
lowing still simpler problems: 

to cj,,,,. The values of 

s.t.: 

all constraints in the original problem 

[eq. 2 ( b ) l  (4b)  

and 

s.t.: 

all constraints in the original problem 

[eq. 2(b) l  (5b) 

Each point of the Pareto set has an optimal his- 
tory, u ( t )  , associated with it. These are generated 
simultaneously while obtaining the solutions of the 
problems described in eq. ( 3 ) ,  using various tech- 
niques, e.g., dynamic programming, iterative dy- 
namic programming, and Pontryagin’s principle us- 
ing first- or second-order techniques. 

The generation of the Pareto set completes the 
first or objective phase of the problem. This is fol- 
lowed by the subjective or the decision-making phase 
involving the decision makers. The  technique^'^*'^ 
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used to decide upon the best of the equivalent op- 
timal points on the Pareto set are described later in 
this article for the example studied herein. 

The industrial r e a c t ~ r " ~ * ~  which has been opti- 
mized in the present study is shown schematically 
in Figure 1. The reactor is a jacketed vessel equipped 
with a low-speed anchor or ribbon agitator for mix- 
ing the reaction mass. A liquid mixture of caprolac- 
tam and water (along with other inert additives like 
TiOz, etc.) is heated by condensing vapors in the 
jacket. Polymerization takes place in the liquid 
phase, as the temperature goes above 220°C, and 
some water and caprolactam vaporize. The pressure 
above the liquid reaction mixture is manipulated by 
a control valve which releases the vapor mixture of 
nitrogen (inert), monomer, and water to a condenser 
a t  a prescribed rate so as to maintain a desired pres- 
sure history,p(t), in the reactor. The pressure history 
used presently (termed as reference [ref]) is shown 
schematically in Figure 2 (curve ref), using the fol- 
lowing dimensionless variables: 

Values of pmax,ref and are not being given for 
proprietary reasons. 

The operation of the reactor a t  present (ref) can 
be described in terms of five stages (Fig. 2).  In the 
first stage, the reaction mass is heated gradually to 
about 250-270°C. During this time, the control valve 
is kept closed and the pressure is allowed to  build 
up to a desired, maximum value, pmax,ref. In stage 2, 
the valve opens and releases vapor a t  such a rate so 
that the pressure remains constant a t  pmax,ref for a 

ondcnror system 

Condensing 
vapor at Tj 

Condensate 

Figure 1 
semibatch nylon 6 reactor. 

Schematic representation of the industrial 

Figure 2 Schematic pressure histories for the semibatch 
reactor. Curve (ref): current industrial practice; (0) history 
for optimization purposes. 

short period of time, tc,ref. In the third, fourth, and 
fifth stages, the control valve is operated such that 
the pressure drops linearly (at different rates), finally 
reaching a value slightly above atmospheric (to pre- 
vent leakage into the reactor) a t  the end of the fifth 
stage. By this time, the polymerization is complete, 
and the contents of the reactor are emptied for fur- 
ther processing (cooling to below the melting point 
of nylon 6, hot-water extraction, pelletizing, etc.). 

In this industrial reactor, the jacket fluid tem- 
perature is maintained constant with time. Details 
of the model used, some operating conditions, the 
simulated temperature and pressure histories for 0 
- < t 5 
first zone (which is determined by the rate of va- 
porization of monomer and water) are available in 
Ref. 24, and the computed results are found to com- 
pare well with industrial data for three different po- 
lymerization runs.24 This model is used without any 
change for multifunction optimization. 

and the simulated pressure history in the 

FORMULATION 

Two objective functions were selected in this study 
for minimization: 

( i )  The dimensionless reaction time, tj/tj,ref : 
The residence time is determined by the time 
required for the degree of polymerization, pn, 
to  reach a value, pn,ref, being obtained pres- 
ently in the industrial reactor. This ensures 
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( i i )  

the quality of the product in terms of its 
physical properties. This requirement is 
termed as  a stopping condition, since the in- 
tegration of the model equations (ODEs) 
terminates when y n f  = y,( t f )  = yn,ref. 

The nondimensional concentration of the 
undesirable cyclic compounds in the polymer 
produced: Since cyclic dimer formation pre- 
dominates over the production of higher 
cyclic oligomers, we minimize [ CZ]f/ [ C2]f,ref- 
The cyclics cause problems in polymer pro- 
cessing and hot-water extraction is used to  
remove them.25 Since this operation is ex- 
pensive and energy-intensive, minimization 
of the final cyclic dimer concentration is im- 
portant. It is to be noted that tf,ref and [ C2]f,ref 
are constants and their inclusion in the in- 
dividual objective functions does not influ- 
ence the results of the study in any way. 

The above objective functions are incompatible, l2 

since trying to minimize one of them may lead to 
larger values of the other. Hence, there is a definite 
advantage in resorting to multiobjective function 
optimization. The jacket fluid temperature, Tj (con- 
s tant) ,  and the vapor-release rate history, VT( t ) ,  
are the operating variables for this industrial reactor, 
and so should be taken as the control variables. An- 
other constraint that we would like to meet is that 
the final monomer conversion, convf, remains at  the 
value, convf,ref, obtained presently. This will ensure 
no additional load on the follow-up units in the in- 
dustry, where the unreacted monomer has to  be 
leached out and suitably disposed of (or  recycled). 
The monomer conversion in a semibatch reactor a t  
any time, t ,  is defined as  

where F and [ C1 ] represent the mass of the liquid 
reaction mixture and the concentration (mol/ kg) 
of the monomer a t  any time, respectively, and 0 rep- 
resents the initial values. 5; is the (cumulative) 
amount (mol) of monomer that has vaporized until 
time t .  Correcting for monomer vaporization in this 
way is quite common and useful for semibatch re- 
actor operation. Thus, the optimization problem 
being solved in the present study is defined by 

Pn,f  = Pn,ref (8b)  

convf = convf,ref (8c)  
mass and energy balance equations (8d)  

any additional limits 

put on control variables (Be) 

We now discuss eqs. 8 ( d )  and 8 (e )  in more detail. 
The reactor is described by a set of ordinary differ- 
ential equations representing the mass and energy 
balances, as well as by the equations for the moments 
of the chain-length distribution of the polymer 
formed. These are given in Ref. 24, in the form dxi / 
dt = f i  (x) , along with several auxillary algebraic 
equations to estimate the rates of heat and mass 
transfer (vaporization). These are to  be used in eq. 
8 (  d)  . The backward difference formulas for stiff 
equations26 are used to integrate these ODEs. This 
was done using the DO2EJF subroutine of the NAG 
library, using a relative error tolerance, TOL, of 

The model predicts how several important 
quantities evolve with time, as  well as their final 
values. These include the number-average molecular 
weight or degree of polymerization ( y n )  , PDI, water 
extractibles, cyclic dimer concentration, monomer 
conversion, etc. Also, characteristics like heat and 
mass transfer rates, viscosity of the reaction mass, 
pressure in zone 1 (when the control valve is closed, 
i.e., VT = O ) ,  etc., are predicted for a specified feed 
and given values of Tj,  as  well as  the pressure his- 
tories, p ( t ) ,  in zones 2-5. 

Solving the multiobjective optimization problem 
described in eq. (8) requires the use of Pontryagin’s 
minimum principleZ7 to obtain optimal histories of 
VT( t )  . This is not too easy a task for the industrial 
problem being studied here, and, indeed, our early 
attempts failed due to computational problems. A 
few exploratory simulation runs with different VT( t )  
and p ( t )  histories were made to see if the problem 
could be reformulated (while still being useful to 
industry). It was inferred that we could choose Tj 
and p ( t )  as the control variables instead of Tj and 
V T ( t ) .  In fact, we could freeze the shape of p ( t ) ,  
use a few parameters (constants) to  describe this 
history, and then obtain optimal values for these 
parameters. The mathematical and numerical prob- 
lems associated with this modified problem are far 
less. The shape of the pressure history used for op- 
timization is described completely in terms of only 
four stages (instead of five as  being used currently) : 

( a )  The pressure builds up from 1 atm to pmax 
during 0 I t I t l ,  the valve being closed ( VT 
= 0 )  during the first stage. s.t.: 
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( b  ) The pressure is maintained constant a t  pmax 
during tl 5 t I tl + t,. 

( c )  The pressure decreases with slope S (i.e., d p /  
dt = - S ) ,  until p becomes 1.04 atm. Thus, 
stage 3 extends over tl + t, 5 t I tl + t, + (p,,, 
- 1.04 a tm) /S .  

( d )  The pressure is maintained a t  1.04 atm until 
p, reaches the desired value, p,,ref. At this 
point, t = t f .  

We see that the optimal pressure history can be de- 
scribed by only three ( constant) parameters, p m a x ,  
S, and t, ( tl and tr being computed from the model 
equations). Figure 2 shows this pressure history 
schematically. The VT(  t )  history in stages 2,3, and 
4 can be evaluated from the model once the optimal 
p ( t )  is known. The control variables for this new 
optimization problem are, thus, pmax, S ,  t,, and Tj, 
all being constants whose values are to be deter- 
mined. 

The modified optimization problem is described 
by 

lease of vapors, VT.  It is unlikely that the existing 
control valve can accommodate much higher vapor 
release rates than the current value. The  upper limit 
on tc [eq. (9g)l  has been taken to  be about twice 
the maximum value being used currently. The lower 
limit on TI [ Eq. (9h )  ] is the melting point of nylon 
6, while the upper limit is about 20°C higher than 
the current jacket fluid temperature. The upper lim- 
its imposed on t, and TI are purely for ease of com- 
putation, since the optimal values of these param- 
eters lie away from these bounds. 

For generating the Pareto, the &-constraint ap- 
proach applied to eq. (9) necessitates the solution 
of the following problem: 

s.t.: 

(lob) 

constraint eqs. (9b)-(9h) (10c) 

tl - &  - -  

%ref 

The range of tf/tj,ref. to be explored (i.e., the range of 
c) is determined by solving the two simpler opti- 
mization problems described by 

s.t.: 

s.t.: 

constraint eqs. (9b)-(9h) (1lb)  

and 
x ( t  = 0 )  = xo (from Ref. 24)  (9d )  

P m a x / P m a x , r e f  I 1.0 (9e)  

0 I S/Smax,ref I 1.0 (9f)  

0.0 I t,/tf,ref I 0.1875 (9g)  

0.8703 I Tj/563 K I 1.0 (9h )  

where po( t )  and pLl ( t )  are the zeroth and first 
moments of the chain-length distribution a t  any 
time, t .  

It may be noted that several minimum/maximum 
value constraints on the control parameters, pmax, 
S, t,, and Tj, have been included in eq. ( 9 ) ,  again 
in a dimensionless form. Equation 9 ( e )  is a reason- 
able constraint to use for the existing reactor since 
we did not wish to exceed the pressure rating of the 
industrial reactor. Equation 9 ( f ) on S, indirectly, 
puts some kind of an upper limit on the rate of re- 

s.t.: 

constraint eqs. (9b)-(9h) (12b) 

The above three optimization problems [eqs. 
(10)-(12)] are solved using the E04UCF code of the 
NAG library. This code is designed to solve the non- 
linear programming (NLP) problem. It minimizes a 
single, smooth function, 3 ( x ) ,  of n state variables, 
x ,  subject to constraints which may include n simple 
bounds on the state variables, nL, linear, and n,l, 

smooth, nonlinear constraints involving x. It uses 
a sequential quadratic programming (SQP) algo- 
rithm, as developed by Gill e t  al.2s*29 The method 
first determines a feasible point which satisfies all 
the constraints. Then, in each iteration, it 
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Table I Initial Guesses for Generation of First Point on the Pareto Sets 

Problem 
No. [WO P(n,ref 

1 3.45% 152.0 
2" 3.45%' 152.0 
3" 3.45%c 152.0 
4" 3.45%' 152.0 
5 2.52% 156.0 
6 4.43% 150.0 
9 3.45% 152.0 

%ref 

T, 
563 K 

1.5 0.663284 
1.5 0.714286 
1.5 0.425188 
1.5 0.412343 
2.0 0.658932 
1.5 0.702556 
5.5 0.700000 

1 .o 
1.0 
0.715 
0.515 
1.0 
1.0 
1 .o 

0.0 
0.0 
0.056 
0.102 
0.0 
0.0 
0.0 

0.952140 
0.957383 
0.879339 
0.901480 
0.960214 
0.960214 
0.980000 

a ':VT-constrained problem. 

(a) solves a quadratic programming (QP) prob- 
lem in which the nonlinear function, 3, is 
expanded around the feasible point by a qua- 
dratic function, and the nonlinear constraints 
are linearized, using Jacobians. The solution 
of this QP problem gives a search direction; 

(b) obtains a step size in this direction which 
minimizes an augmented Lagrangian merit- 
function; and 

(c) updates the approximate Hessian of the La- 
grangian merit-function using a modified 
BFGS quasi-Newton method. 

Initial estimates to  the solution of the optimization 
problems, and the range of E ,  must be supplied. These 
are given in Tables I and 11. The values of the other 
important parameters required in the E04UCF code 
are given in Table 111. All the partial derivatives 
required by the technique are generated numerically 
by the program. The CPU time taken for a typical 
run on a DEC ALPHA 3000/600 S mainframe com- 
puter is 1-5 min, depending upon the number of 
iterations, and the number of times the QP problem 
is solved in one iteration. 

Table I1 
[Eqs. (11) and (12)] 

Minimum Values for Il  and I2 

1 3.45% 0.4687150 0.1341986 
2-4" 3.45%" 0.4687293 0.1346451 

5 2.52% 0.4334147 0.1291566 
6 4.43% 0.4933124 0.1426872 
9 3.45% 0.4213532 0.1336732 

* VT-constrained problem. 

RESULTS AND DISCUSSION 

The reference values ( tf,ref, convf, and [ C2 ) were 
first generated using the simulation code developed 
by Wajge et al.24 The feed conditions as well as some 
of the operating conditions used for manufacturing 
one grade of nylon 6 currently (being referred to as  
Problem 1) are24 

Problem 1 

[ C1 = 8.54425 mol/ kg 

[WIO,,,, = 1.91667 mol/kg 

(3.4596, by weight) 

TO,,,f = 90°C 

Tj,,f = 27OOC 

= 101.3 kPa (1 atm) 

Srnax,ref = 1.5 (13) 

Under these conditions, the value of pn,ref is 152.0. 
Other details are available in Ref. 24. 

Figure 3 shows the Pareto set obtained for the 
[ W lo = 3.45% case [Problem 1, eq. (13)]  using the 
solutions of eqs. ( 11) and ( 12)  as given in Table 11. 
Increments of 0.01 for E have been used in eq. ( lob) .  
I t  may be mentioned that the starting (guess) so- 

Table I11 Parameters Used in the SQP Code 

Parameters Values 

10-4 
10-4 
10-1° 
10-8 
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0.10 
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- 
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Eq. 12 - I ” (  

I 
I 

- 1  
- 
w”l 
I ’ I  I 1  I ’ I 1  ’ I I 

lution for the first Pareto point corresponding to  c 
= 0.47 [ eq. ( 10) ] is that given in Table I. For sub- 
sequent values of c (0.48,49, . . .) studied, the guess 
solution is the optimal solution (on the Pareto set) 
for the previous value of c .  This “educated” starting 
guess for all points on the Pareto set (except the 
first ) helps reduce the computer time considerably, 
without affecting the final results much. 

Figure 3 shows that as  the value of one objective 
function, t f /  tf,ref, decreases (improves) the other one 
increases (worsens). The curve in Figure 3, thus, 
depicts the typical characteristics of a Pareto set. 
The corresponding optimal values of the control pa- 
rameters, pmax, s, t,, and Tj ( in dimensionless form), 
corresponding to the different points of the Pareto 
in Figure 3, are shown in Figures 4-7 (circles). Some 
amount of scatter is observed in Figures 4-6, but 
the optimal values of Tj show a smooth decrease as  
t f / t f ,ref  increases. In fact, some adjacent values of 
the optimal control parameters fluctuate wildly, even 
though the Pareto itself is quite smooth. This creates 
problems in the use of our optimization results in 
industry and needs further study. We found that 
changes in values of pmaw, S, and t, around their 
optimal values lead to relatively small changes in 
the values of tf/tf ,ref and [ C2If /  [ Cz]f,ref. This suggests 
that we can obtain smoothened curves for the op- 

[WI,  : 3 . 4 5 %  

0.8 I c 

o’4 t 
0.2 

0.4 0.6 0.0 
tt/tt,ret 

0 

Figure 4 Optimal values of the dimensionless maximum 
pressure for the different cases shown in Figure 3. [W0 
= 3.45%. 

erating (control) parameters (instead of the fluc- 
tuating points shown by circles in Figs. 4-6) and 
still be quite close to Pareto solutions. These sub- 
optimal solutions would have more use in industrial 
practice. 

The suboptimal Pareto set was generated by fix- 
ing S and tc/tf,ref a t  1.5 and 0.025, respectively, and 
obtaining values of p m a x / p ~ a x , r e f  and Tj by solving 
the following problem: 

tw1, = 3 . 4 5 %  

1. A 

0.5l I I I I ’ ’  I ’ 
0.4 0.6 0.0 1.0 

tt tt , ref 

Figure 5 
in Figure 3. [ w], = 3.45%. 

Optimal 1 slope I for the different cases shown 
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[ W b  : 3 . 4 5 %  t 
\ 
U 

Y 

005 c 
0.0 
04 0.6 oa 1.0 

tt 'tt,ret 

Figure 6 
in Figure 3. [ w], = 3.45%. 

Optimal te/tf,ref for the different cases shown 

i = 1, 2 , 3 , .  . . , N P  (14a) 

s.t.: 

tf/tf.ref = (tfP/tT,ref)i (14b) 

(14c) constraint eqs. (9b)-(9e) and (9h )  

In this equation, the superscript, P ,  indicates the 
points on the original Pareto set comprising N P  
points. The problem described in eq. (14a) generates 
(sub)  optimal values of pmax/pmax,ref and Ti which 
give points on Figure 3 which do not deviate much 
from the original Pareto. The suboptimal solutions 
are shown by smooth curves in Figures 3-7. It is 
observed from Figure 3 that the suboptimal 
( smoothened) Pareto is almost indistinguishable 
from the original Pareto, even though some of the 
parameter values differ from their original values 
considerably. It may be added that the constant 
(smoothened) values of S and tc/tf,ref have been se- 
lected after some trial and error, to ensure conver- 
gence of results as well as to obtain reasonably low 
deviations from the original Pareto. 

An interesting variation of the problem described 
in eq. (9)  was to  see if addition of one more con- 
straint on the maximum rate of release of vapors, 
VT,max, leads to any changes in the results. If the 
control valve in the industrial reactor is working a t  
its maximum capacity, VT,max,ref (mol/ h )  , then 

V T , ~ ~ ~ / V T , ~ ~ ~ , ~ ~ ~  would be limited to lie below unity. 
Thus, the following additional constraint could be 
incorporated in Eqs. (9)  - ( 12)  : 

Problem 2 

The results of this problem, referred to as the VT- 
constrained problem, generated using the informa- 
tion given in Tables 1-111, are shown in Figures 8- 
12. A larger amount of scatter is observed in the 
curves showing the optimal values of the parameters 
than in Problem 1. However, the suboptimal Pareto 
obtained using S = 1.5 and tc/tf,ref = 0.015625, and 
solving the problem described in eq. ( 14) [with the 
constraint of eq. (15)  included], is again observed 
(curve in Fig. 8) to lie close to the original Pareto 
set. I t  is interesting to observe that the suboptimal 
Pareto in Figure 8 is almost identical to that in Fig- 
ure 3, even though values of VT,max/VT,max,ref go be- 
yond 1.0 for the points on the original Pareto. The 
optimal value of T, also is observed to be almost 
identical for the VT-constrained and unconstrained 
problems. 

We now decided to study the sensitivity of the 
Pareto set to the initial guess used. The VT- 
constrained problem was solved again, this time 
starting from the high tf/tf,ref end (Problem 3 ) .  The 
guess solution used is given in Table I (Problem 3 ) .  

0.4 0.6 0.8 1 .o 
t t ' t t  ref 

Optimal jacket temperature for the different Figure 7 
cases shown in Figure 3. [ w], = 3.45%. 
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The corresponding Pareto set (reverse) is shown in 
Figure 13 by triangles. Another set of Pareto points 
(Problem 4 )  was generated, starting close to the 
midpoint of the Pareto in Figure 3. The initial 
guesses for this problem are given in Table I, and 
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Figure 9 Optimal values of the dimensionless maximum 
pressure for the different cases shown in Figure 8. [ w], 
= 3.45%. 
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Figure 10 
in Figure 8. [w0 = 3.45%. 

Optimal I slope I for the different cases shown 

the Pareto set (midpoint) is shown by crosses in 
Figure 13. The initial guess is observed to  affect the 
Pareto somewhat. Indeed, the SQP method used for 
generating the optimal solutions has first-order 
convergence characteristics, and it is not possible to 
obtain exact results numerically, since the rate of 
convergence becomes extremely sluggish as one ap- 
proaches the solution. This is why slightly different 

i 0.20 
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\ ? U 
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00 
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t f / t f ,  ref 

Figure 11 
in Figure 8. [ Yo = 3.45%. 

Optimal te/tl,ref for the different cases shown 
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oa I 0 Forward 
I Reverse 
x Mid-point 

? I -  

0.4 0.6 0.8 1.0 

t f 1 11, ref 

Figure 12 
cases shown in Figure 8. [ w], = 3.45%. 

Optimal jacket temperature for the different 

numerical results are obtained for the Pareto set, 
depending on the initial guess used. Strictly speak- 
ing, therefore, when first-order computer methods 
are used to generate the solutions to the optimization 
problem, one can at  best obtain a suboptimal, narrow 

1 

t 
I 
I 
I 
I 
I8 
I 

0 Forward 
b Reverse 
X Mid-point 

I 
I 
I 

I 1  I I I I I l I l l  
0.6 0.8 

t f  /tf,ref 

Figure 13 "Exact" Paretos for the VT-constrained 
problem, as obtained from different starting guesses. [ w], 
= 3.45%, fin,ref = 152. 

0.21 ' I I ' ' I I I 1 '  

+/+,ref 

Figure 14 
the three Paretos of Figure 13. 

Optimal values of the dimensionlessp,,, for 

Pareto band. The (sub)  optimal values of the pa- 
rameters, also, depend on the choice of the initial 
conditions. Figures 14-16 show results on the op- 
timal values of the operating parameters, obtained 
for the different Pareto sets in Figure 13. Optimal 

0 5  
X 

xxx  
0 Forward 
I Reverse 
x Mid-paint 

XX. 

0.01 ' '  I ' I I I ' I 
0.4 0.6 0.8 1.0 

t f ' t t , r e t  

Figure 15 Optimal values of the I slope I for the three 
Paretos of Figure 13. Some crosses on the upper border 
have not been shown for clarity. 
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x Mid-point 
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Figure 16 
of Figure 13. 

Optimal values of tc/tf,rer for the three Paretos 

values of Tj are almost unaffected by the choice of 
the starting point, and Figure 12 holds for all cases. 
In view of the scatter observed in Figures 13-16, 
generating suboptimal Paretos using the smooth- 
ening technique [ eq. ( 14) ] appears justified. 

Suboptimal (smoothened) Pareto solutions (with- 
out VT-constraints) were generated for the two other 
gradesz4 of polymer being produced currently in the 
industrial reactor. These correspond to a different 
set of values of [ W], ,  conv,, pLn,ref, and Smax,ref7 some 
of which are given in Table I (Problems 5 and 6 ) .  
The initial guesses and the solutions of the asso- 
ciated limiting optimal problems [ eqs. ( 11 ) and 
( 12)] are given for these cases in Tables I and 11. 
Values ofpo,ref and To,ref are the same as in eq. (13). 
The Pareto sets are given in Figure 17 (only the 
smoothened Pareto sets are shown). The values of 
[ Cz]f,ref used for nondimensionalization are slightly 
different for the three cases shown and correspond 
to currently produced concentrations of the cyclic 
dimer in the different batches. The trends, however, 
remain the same, even if we plot [ C,], rather than 
the dimensionless values. Figure 18 shows the op- 
timal (smoothened) values of the operating param- 
eters for these cases. Smoothened values of S and 
tc/t,,ref for these problems are given in Table IV. It 
is to be noted that one can achieve substantial im- 
provements in the operation of the industrial reactor 
in all three cases studied herein, merely by effecting 

I I I I I 

04 0.6 0.8 1.0 
t f  / t f  *ref 

Figure 17 Unconstrained, smoothened Paretos for the 
three grades of nylon 6 produced presently. Problem 
numbers described in Table I. Utopia and preferred so- 
lutions shown along with limiting values obtained using 
eqs. (11) and (12). Values of [ Wl0, pnf,  and convf,,f differ 
for the three cases. 

simple changes in the operating variables in the in- 
dustrial reactor. 

The Pareto sets in Figure 17 correspond to dif- 
ferent values of [ w],, p,,ref, and conv,, as practiced 
in the industrial situation currently [by varying p(t), 

- 530 

Y 

- 6- 

- 510 

- 

0.21 I 1 I I I 1490 
0.4 0.6 0.8 1.0 

tt 1 tt,ref 

Figure 18 Optimal (smoothened) values of pmex/pmax,ref 
and jacket fluid temperature for the Paretos of Figure 17. 
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Table IV Smoothened Optimal Values 
of S and t c h e f  

~ ~ 

Problem No. S (atm/h) t C / t / , , , f  

1 
2‘ 
5 
6 

1.5 0.025 
1.5 0.015625 
2.0 0.0000625 
1.5 0.00625 

but using the same tr]. An interesting result is ob- 
tained when we generate Pareto sets (in the absence 
of VT-constraints), keeping p n f  fixed a t  152.0 and 
the monomer conversion constant a t  the reference 
value of Problem 1 and varying [ w], alone. A study 
of Pareto sets so generated (Fig. 19, near the central 
region) reveals that the value of [ w],, = 3.45% pres- 
ently being used to manufacture this grade (p,,,, 

= 152) of polymer appears to be the best and that 
increasing [ w], substantially would lead to a wors- 
ening of the operation. 

As indicated earlier, with the generation of the 
Pareto sets, the mathematical phase of the problem 
is over. A decision maker (DM) can now select a 
“preferred” solution from among the equivalent op- 
timal points on the Pareto. A simple and widely used 
technique for doing this is the Surrogate Worth 
Trade-off Method. The slope of the Pareto, dIi/dI,, 
a t  any point represents a trade-off value between 
the objectives I i  and Ij  quantitatively. The DM as- 
signs weights (in the range -10 to $10) to each point 
on the Pareto, looking a t  the slopes as well as using 
his or her judgment (usually nonquantifiable). The 
magnitude of the assigned weight depends on how 
strongly the DM favors or rejects the trade-off. The 
preferred solution finally selected is the one to which 
the DM (or DMs, each assigning weights indepen- 
dently, before an  averaging is done) has assigned a 
weight of zero, i.e., the DM feels that a t  the preferred 
point the gains and losses of moving away balance 
each other. The Pareto helps narrow down the focus 
of the DM to a selected number of equivalent op- 
timum points and channelizes the thought processes 
of the DM in a better manner. 

A simpler and more mathematical approach is to  
select the preferred solution as a point nearest to a 
point called utopia. This is the point whose coor- 
dinates are the solutions of Eqs. (11) and (12). This 
point is, obviously, unattainable, but represents an 
ideal. Choosing a (feasible) point on the Pareto 
nearest this point is a reasonable choice, in the ab- 
sence of additional information usually constituting 
one’s “judgment.” Figure 3 shows the utopia (Ul) 
as  well as the preferred solution (Ol). Figure 17 

shows these points for the three grades of polymer 
being produced. Table V gives more detailed infor- 
mation on the three preferred solutions shown in 
Figure 17. Also included in this table (as Problems 
7 and 8) are optimal solutions for Problems 1 and 2 
as obtained by us earlier3’ for the [ wJo = 3.45% case, 
using only three control variables, pmax/~max,ref, S, 
and t,/t,,,f (and not T,, which was fixed at  270OC). 
A one-variable search optimization technique was 
used in our previous study with “judgment” used to 
ascertain the best point (rather than use multiob- 
jective function optimization). It is observed that 
our earlier study led to a slightly better optimum 
point (both [C2]r/[C2]f,ref and tf/tf,ref are better; see 
Table V, Problems 1 and 7), but it must be men- 
tioned that the value of S,,, was much higher com- 
pared to that used in the present study, in which 
S,,, is kept a t  the current operating value of Sref 
= 1.5. Higher values of S in Problem 7 lead to higher 
maximum values of the vapor release rate. Use of a 
higher permissible range of S, 0 I S I 5.5, with the 
current technique (multiobjective function optimi- 
zation) leads to the preferred solution given in Table 
V (Problem 9). The values of both [C,], and tr are 
found to be worse than in Problem 7.30 However, 
the value of convf/convf,,ef in Problem 7 is lower at  
0.9897 than in Problem 9, for which it is 1.0 f 0.0001. 

Figure 20 shows how p,, varies with t/tf,ref for the 
operating conditions used ~urren t ly , ,~  as well as for 

0.1 * I w 10 ,*I. 
9.50 
3.45 
1.50 

0.4 0.6 0.8 1.0 

t f  ’9.d 
Figure 19 Smoothened Paretos for the case of pnJ 
= 152, with [ w], varied but convf,,f remaining the same 
for all cases. 
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Table V Preferred Solutions from the Pareto Sets 

Problem 
No. 

5 
1 
6 
7 
8b 
9 

I W I O  PL,,*ef 

2.52% 156.0 
3.45% 152.0 
4.43% 150.0 
3.45%30 152.0 
3.45%30 152.0 
3.45% 152.0 

[c,lf 
IC2lhref 

0.156 
0.163 
0.172 
0.156 
0.181 
0.165 

tf 
tf& 

0.55 
0.58 
0.62 
0.405 
0.407 
0.55 

- P m a x  

Pmar.ref S 

0.599 1.81 
0.606 1.50 
0.647 1.455 
0.829 5.5 
0.60 2.5 
0.766 5.5 

t c  

%ref 

0.003295 
0.008984 
0.0006378 
0.0 
0.05 
0.0 

244.91 
242.26 
239.13 
270.00" 
270.00" 
246.23 

1.547 
0.858 
0.851 
1.700 
0.985 
1.770 

Assumed. 
Vr-constrained case 

the preferred solutions (Problem 1,5, and 6 in Table 
V). It is interesting to note that optimal operation 
leads to a vanishing of the intermediate plateau in 
the p n ( t )  plots. Also, p n  does not attain its final value, 
pn,ref, asymptotically for the optimal cases, and, so, 
better control of the emptying operation of the re- 
actor is required to prevent the overshoot of p n .  Such 
control should not pose much problem these days. 
Figure 21  shows the variation of the temperature of 
the reaction mass for the current operation, as well 
as for the optimal cases (preferred solutions in Table 
V). The temperature history, T( t ) ,  for the optimal 
solution differs from what is currently practiced, be- 
cause of differences in the rates of vaporization ne- 

0 0.4 0.8 ' t f ,ref 

Figure 20 Variation of the degree of polymerization 
with dimensionless time for the current and optimal (pre- 
ferred solution) cases, for the three grades of nylon 6 pro- 
duced (see Fig. 17). 

cessitated by different pressure histories. These 
trends are similar, qualitatiuely, to what was pre- 
dicted for the optimal conditions in our previous 

CONCLUSIONS 

In this article, multiobjective Pareto optimal solu- 
tions have been generated for an industrial nylon 6 
reactor for producing three different grades of poly- 
mer. Operating variables have been generated cor- 
responding to the preferred optimal solutions for all 
three cases. These can be implemented on the in- 

0.01 ' 1 I I I I I I  I 
0.0 0.2 0.4 0.6 0.8 1 .o 

't f ,ref 

Figure 2 1 Variation of the dimensionless temperature 
with dimensionless time for the current and optimal (pre- 
ferred solution) case, for three grades of nylon 6, as in 
Figure 17. 
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dustrial unit quite easily and lead to substantial im- 
provements over the present situation. The meth- 
odology used is better than that used in our previous 
study, where individual judgment was used to decide 
upon the best point. The technique can easily be 
applied or extended to  other industrial polymeriza- 
tion reactors, even though our focus has been on a 
particular kind of a nylon 6 semibatch reactor. 

This work has been partly funded by a grant from the 
Research Center, Gujarat State Fertilizers Co. Ltd., Va- 
dodara, India. 

N O M E N C L A T U R E  

[GI 

[ cz 1 7J 

conv 
D P  

F 
3 
funcpr 
I 
n 
N P  
PDI 
P 
S 

t 
t c  

tf 
t 7,i 
T 
TOL 

VT 
[WI 

U 

X 

concentration of caprolactam ( i  = 1) and 
cyclic dimer ( i = 2)  in liquid phase (moll  
kg mixture) 

nondimensionalized final dimer concen- 
tration, [ C Z l f /  [ C2]f,refr corresponding to 
i th  point on Pareto 

monomer conversion [ eq. ( 7)  ] 
degree of polymerization of polymer prod- 

mass of liquid in reactor a t  time t (kg)  
general, nonlinear function 
precision for function evaluation 
vector of objective functions, Ii 
no. equations 
no. points on Pareto 
polydispersity index 
pressure (kPa  or atm) 
slope (absolute value) of pressure vs. time 

plot during the third stage in reactor 
being optimized (a tm/h)  

uct 

time ( h )  
time for which pressure remains constant 

total reaction time ( h )  
nondimensionalized reaction time, t f /  tf,ref, 

corresponding to i th  point on Pareto 
temperature ( K )  
tolerance in DOBEJF code of NAG library 
vector of control variables, ui 
rate of vapor release from reactor ( mol/ h )  
water concentration in liquid ( mol/ kg 

vector of state variables, xi 

a t  Pmax ( h ) 

mixture) 

Greek letters 

Pi 

P n  
IT 
7 

3; 

i th  moment of the chain length distribu- 
tion ( i  = 0, 1, 2 , .  . . ) 
number-average chain length ( =pl/po) 
dimensionless pressure [ eq. ( 6 ) ] 
dimensionless time [ eq. (6)  ] 
total moles of monomer vaporized in re- 
actor until time t (mol) 

Subscripts/Superscripts 

act 
C 

f 
j 
L 
max 
nl 
0 
ob 
Pr 
P 
ref 

active constraints 
VT-constrained problem 
final (value for the product) 
jacket 
linear constraints 
maximum value 
nonlinear constraints 
feed conditions 
objective function 
precision 
Pareto 
reference (value used in industrial reactor 
currently ) 
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